
Edging Towards Exascale With NIX

Jim McKie John Floren
Bell Laboratories Sandia National Laboratories

jmk@research.bell-labs.com jfflore@sandia.gov

Abstract

This paper describes NIX, an operating system for manycore

CPUs. NIX has been influenced by our work on Blue Gene,

Roadrunner, and more traditional HPC systems such as

clusters. NIX is designed to support a heterogeneous model in

which some CPUs can run a kernel and some can not; in which

not all memory is shared; and in which the architectures might

not all be binary compatible.

Introduction

The anticipated architecture for future systems is a
heterogeneous multicore model, where some cores are
incapable of running a full operating system in order
to meet power/density goals and memory constraints.
We have developed a hybrid runtime prototype called
NIX to explore alternative design points for such
architectures. NIX partitions cores by function,
amongst which are Timesharing Cores, or TCs, and
Application Cores, or ACs. One or more TCs run tra-
ditional applications, functioning in a way indistin-
guishable from a standard timesharing kernel. ACs
are devoted to running an application with no inter-
rupts; not even clock interrupts. NIX is capable of
shipping unsupported events on ACs, such as excep-
tions and requests for OS/R services, to a TC running
on a core capable of handling such events. The num-
ber of cores assigned to each function need not be not
static and can change as needed, the only requirement
being that there must always be at least one TC. An
important design feature of NIX is the incorporation
(or retention) of a conventional timesharing core,
thereby providing backwards compatibility, and a way
to quantify and evaluate design points.

This has been used to explore the design space for
designatingroles to cores for particular duties, experi-
menting with different mechanisms for handling
exceptions and requests for OS/R services, and evalu-
ating different mechanisms for efficient core to core
communication. Initial results using the FTQ OS
Noise benchmark show the NIX runtime dedicated
ACs achieve a much better noise profile than a tradi-
tional kernel, in line with that of the best FTQ results
obtained by current practice, e.g. a light-weight kernel
(LWK) such as the BlueGene CNK.

Some of the issues to be faced in exploiting future
systems using the aforementioned methodology are
shown by a naïve implementation of an HTTP server

and a networked key-value store written to examine
performance. In both applications, a process is
assigned to each new client connection and handles
both I/O and request processing, and performance was
acceptable and similar when running on two tradi-
tional timesharing systems, Linux and NIX using only
TCs. However, there is significant performance loss
when run on ACs due to the additional overhead of
sending I/O to another core. This simple analog of
attempting to use heterogeneity shows some of the
challenges ahead for both application writers and
hardware designers: for example, applications could
implement strategies to reduce the number of I/O
operations, and I/O hardware could be self-virtualized,
but both approaches have costs and issues in scalabil-
ity, e.g. will the hardware approach scale if there are
1000s of cores per node? Early identification of
potential problems is important.

We have also investigated how this architecture inter-
sects and affects traditional OS/R components.
Amongst these are the process execution model, inter-
process communication and synchronization, page
size and management, and memory allocation (includ-
ing NUMA).

Status

NIX is currently a modified timesharing system that
has previously been successfully run on systems rang-
ing from embedded to HPC. The application of the
ideas in NIX are not, however, tied to any particular
OS and have been taken up by other groups working
in the same area (e.g. FusedOS[1]). In addition, expe-
rience with NIX is being used to guide the design of
Osprey[2], a clean-slate runtime for predictable cloud
computing being developed by the Network Systems
group at Bell Labs.

NIX was created as a joint effort by Sandia National
Laboratories, Bell Laboratories, and The Universidad
Rey Juan Carlos, Madrid. All three contributed to the
initial design and implementation, and continue to be
actively involved. Sandia is currently focused on
benchmarking and applications, Bell Labs on basic
OS/R principles, hardware support, and execution
models, and UJRC have recently targeted scheduling
issues and contributed much of the instrumentation
and monitoring scaffolding which is central to under-
standing the combined effects of OS/R and exotic



- 2 -

hardware design changes.

The initial NIX hardware target was a manycore
AMD64 system. It is anticipated that the initial core
port of NIX to BG/Q, including full memory-
management support and user-environment, will be
completed in Summer 2012, with full multi-core and
multi-thread support later in the year. Once the core
port is in place, the team will move on to integrated
networking and multi-node support.

Discussion

While NIX is a new operating system, we have chosen
to build it on a traditional operating system in a way
that preserves binary compatibility but also enables a
sharp break with the past practice of treating many-
core systems as traditional SMP systems. We were
influenced in this decision by watching the struggles
of a number of "from scratch" operating systems
efforts; we wanted to always have a working system
on which to build.

The challenges of exascale force a rethink on many
components of the OS/R, but there are many tricky
implementation decisions that have been made cor-
rectly in extant kernels, and many of the components
and techniqueswill transfer forward; there is no need
to reimplement and risk recreating the same errors that
were resolved in an existing OS/R until the design
space is better understood.

NIX is also strongly influenced by our experiences
over the past five years modifying and optimizing a
general-purpose OS to run on HPC systems such as
IBM’s BlueGene, applying our experience with large
scale systems to general purpose computing. This
experience[3] has shown thatRight-Weight Kernelsin
HPC can have negligible overhead compared to spe-
cialized runtimes, while offering all the advantages of
access to a general-purpose OS; in this light, the
design decision to use a TC seems sensible, and
allows us to concentrate on the interesting and novel
architecture challenges.

Challenges and Future Work

Given its heritage and structure, NIX obviously tar-
gets many legacy OS/R issues. However, the empha-
sis on having a well-understood and instrumented sys-
tem enables NIX to evaluate comparative OS/R capa-
bilities rather than pure performance in other key chal-
lenge areas, for example:

� Hardware. Many opportunities will exist to
leverage new hardware facilities such as trans-
actional memory support, atomic memory
regions, etc. to enhance performance, effi-
ciency, and reliability of the OS/R in support of

target applications;

� Managing heterogeneity at many levels. It is
expected this will cause ongoing refinement of
the core role mechanism, with extensions of the
implementation into different process contexts;

� Scheduling within and between cores and
nodes. Experiments have already identified
scheduling anomalies when there is a dynamic
mix of cores with different roles; such knock-on
effects are a barrier to effective parallelism and
scalability;

� Global control and coordination. The current
model of one machine, one application is
unlikely to survive; the move to a workflow
model of computation, and the need to support
fault management, will require the addition of
scalable management across the applications
and system, in much the same way as a tradi-
tional OS/R manages its resources.

Acknowledgements

This material is based upon work supported in part by
the Department of Energy under Award Number DE-
FC02-10ER25997/DE-SC0005158.

NIX is a collaborative effort and we would like to
acknowledge the contributions of all the authors in
[4], especially Ron Minnich, amongst others.

References

[1] Robert W. Wisniewski, Todd Inglett, Yoonho
Park, Bryan Rosenburg, Eric Van Hensbergen, Kyung
Dong Ryu. FusedOS: Fusing LWK Performance with
FWK Functionality in a Heterogeneous Environment.
Submitted to Supercomputing 2012.

[2] Jan Sacha, Jeff Napper, Hening Schild, Sape Mul-
lender, Jim McKie. Osprey: Operating System for
Predictable Clouds. The Second International
Workshop on Dependability of Clouds, Data Centers
and Virtual Machine Technology, June 2012.

[3] Ronald G. Minnich, Matthew J. Sottile, Sung-Eun
Choi, Erik Hendriks and Jim McKie. Right-Weight
Kernels: An Off-the-Shelf Alternative to Custom
Light-Weight Kernels. InACM SIGOPS Operating
Systems Review, 2006, vol. 40, no. 2, pp. 22-28.

[4] Francisco J. Ballesteros, Noah Evans, Charles For-
syth, Gorka Guardiola, Jim McKie, Ron Minnich,
Enrique Soriano. NIX: A Case for a Manycore Sys-
tem for Cloud Computing. InBell Labs Technical
Journal, 2012, Vol. 17, No. 2.


